

Event/Data Batching for DUNE

Kyle Knoepfel (FNAL), Meifeng Lin (BNL), Haiwang Yu (BNL), Brett Viren (BNL)

HEP-CCE PPS Meeting March 19, 2021

Event/data batching why and what

- Why: To increase CPU/GPU utilization and reduce data transfer overhead
- Three potential granularity levels of "batching" in DUNE/WCT
 - Fine: In the same algorithm, bundle many energy depos into a single batch.
 - Already doing this in wire-cell-gen-kokkos as current PPS activity
 - Coarse: Do we gain by batching simulations of different APAs?
 - Depends on the activity level.
 - May need to select "interesting" APAs to batch.
 - Global: How do we decide when GPU is needed and when CPU is preferred?
 - Only use GPU when gain is more than CPU alone
 - Need fair comparison between multithreaded CPU vs. GPU
 - Can we batch different GPU-enabled algorithms together?

Effort Estimate

- Except for the "fine"-level data batching, it is unclear how much gain we get from event/data batching in DUNE/WCT in general.
- Will need some effort to evaluate what is done currently and what can be done differently to improve the CPU+GPU throughput.
 - Goal is to find use cases that can benefit from event batching such that CPU+GPU throughput is greater than multithreaded CPU throughput.
- Likely use case: APA batching
- Effort Estimate:
 - Evaluation of potential gain from event batching: ~ 1 FTE*month
 - Implementation of the example event batching: ~ 2 FTE*month
 - Contingent on the evaluation
 - Performance evaluation and recommendation: ~ 1 FTE*month
 - Contingent on the evaluation

